Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ecotoxicol Environ Saf ; 225: 112749, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34488142

RESUMO

The effects of long-term rare earth element (REE) and heavy metal (HM) contamination on soil bacterial communities remains poorly understood. In this study, soil samples co-contaminated with REEs and HMs were collected from a rare-earth tailing dam. The bacterial community composition and diversity were analyzed through Illumina high-throughput sequencing with 16S rRNA gene amplicons. Bacterial community richness and diversity were lower in the co-contaminated soils than in the uncontaminated soils, with clearly different bacterial community compositions. The results showed that total organic carbon and available potassium were the most important factors affecting bacterial community richness and diversity, followed by the REE and HM contents. Although the canonical correspondence analysis results showed that an REE alone had no obvious effects on bacterial community structures, we found that the combined effects of soil physicochemical properties and REE and HM contents regulated bacterial community structure and composition. The effects of REEs and HMs on bacterial communities were similar, whereas their combined contributions were greater than the individual effects of REEs or HMs. Some bacterial taxa were worth noting. These specifically included the plant growth-promoting bacteria Exiguobacterium (sensitive to REEs and HMs) and oligotrophic microorganisms with metal tolerance (prevalent in contaminated soil); moreover, relative abundance of JTB255-Marine Benthic Group, Rhodobacteraceae, Erythrobacter, and Truepera may be correlated with REEs. This study was the first to investigate the responses of bacterial communities to REE and HM co-contamination. The current results have major implications for the ecological risk assessment of environments co-contaminated with REEs and HMs.


Assuntos
Metais Pesados , Poluentes do Solo , Bactérias/genética , Metais Pesados/análise , Metais Pesados/toxicidade , RNA Ribossômico 16S/genética , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Microbes Environ ; 35(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969532

RESUMO

The pmoA gene, encoding particulate methane monooxygenase in methanotrophs, and nirS and nirK genes, encoding bacterial nitrite reductases, were examined in the root and rhizosphere sediment of three common emergent macrophytes (Phragmites australis, Typha angustifolia, and Scirpus triqueter) and unvegetated sediment from eutrophic Wuliangsuhai Lake in China. Sequencing analyses indicated that 334 out of 351 cloned pmoA sequences were phylogenetically the most closely related to type I methanotrophs (Gammaproteobacteria), and Methylomonas denitrificans-like organisms accounted for 44.4% of the total community. In addition, 244 out of 250 cloned nirS gene sequences belonged to type I methanotrophs, and 31.2% of nirS genes were the most closely related to paddy rice soil clone SP-2-12 in Methylomonas of the total community. Three genera of type I methanotrophs, Methylomonas, Methylobacter, and Methylovulum, were common in both pmoA and nirS clone libraries in each sample. A quantitative PCR (qPCR) analysis demonstrated that the copy numbers of the nirS and nirK genes were significantly higher in rhizosphere sediments than in unvegetated sediments in P. australis and T. angustifolia plants. In the same sample, the nirS gene copy number was significantly higher than that of nirK. Furthermore, type I methanotrophs were localized in the root tissues according to catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Thus, nirS-carrying type I methanotrophs were enriched in macrophyte root and rhizosphere sediment and are expected to play important roles in carbon/nitrogen cycles in a eutrophic wetland.


Assuntos
Eutrofização , Gammaproteobacteria/genética , Genes Bacterianos/genética , Magnoliopsida/microbiologia , Microbiologia do Solo , Áreas Alagadas , Proteínas de Bactérias/genética , China , Gammaproteobacteria/classificação , Gammaproteobacteria/metabolismo , Dosagem de Genes , Lagos/microbiologia , Metano/metabolismo , Nitrito Redutases/genética , Oxigenases/genética , Raízes de Plantas/microbiologia , Rizosfera
4.
Oncotarget ; 6(8): 6406-21, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25788268

RESUMO

Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 µM while PL at much lower concentrations only suppressed HCC cell migration/invasion. PL selectively elevated reactive oxygen species (ROS) in HCC cells, which activated or up-regulated downstream PERK/Ire 1α/Grp78, p38/JNK/Erk and CHOP subsequently. Administration of antioxidants completely abolished PL's effects on cell death and migration/invasion. However, pharmacological inhibition of ER stress-responses or MAPKs signaling pathways with corresponding specific inhibitors only reversed PL's effect on cell migration/invasion but not on cell death. Consistently, knocking-down of CHOP by RNA interference only reversed PL-suppressed HCC cell migration. Finally, PL significantly suppressed HCC development and activated the ER-MAPKs-CHOP signaling pathway in HCC xenografts in vivo. Taken together, PL selectively killed HCC cells and preferentially inhibited HCC cell migration/invasion via ROS-ER-MAPKs-CHOP axis, suggesting a novel therapeutic strategy for the highly malignant and aggressive HCC clinically.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Dioxolanos/farmacologia , Retículo Endoplasmático/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição CHOP/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Ratos , Ratos Wistar , Transfecção
5.
Acta Pharmacol Sin ; 36(3): 362-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619389

RESUMO

AIM: To investigate the effects of piperlongumine (PL), an anticancer alkaloid from long pepper plants, on the primary myeloid leukemia cells from patients and the mechanisms of action. METHODS: Human BM samples were obtained from 9 patients with acute or chronic myeloid leukemias and 2 patients with myelodysplastic syndrome (MDS). Bone marrow mononuclear cells (BMMNCs) were isolated and cultured. Cell viability was determined using MTT assay, and apoptosis was examined with PI staining or flow cytometry. ROS levels in the cells were determined using DCFH-DA staining and flow cytometry. Expression of apoptotic and autophagic signaling proteins was analyzed using Western blotting. RESULTS: PL inhibited the viability of BMMNCs from the patients with myeloid leukemias (with IC50 less than 20 µmol/L), but not that of BMMNCs from a patient with MDS. Furthermore, PL (10 and 20 µmol/L) induced apoptosis of BMMNCs from the patients with myeloid leukemias in a dose-dependent manner. PL markedly increased ROS levels in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the antioxidant N-acetyl-L-cysteine abolished PL-induced ROS accumulation and effectively reduced PL-induced cytotoxicity. Moreover, PL markedly increased the expression of the apoptotic proteins (Bax, Bcl-2 and caspase-3) and autophagic proteins (Beclin-1 and LC3B), and phosphorylation of p38 and JNK in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the specific p38 inhibitor SB203580 or the specific JNK inhibitor SP600125 partially reversed PL-induced ROS production, apoptotic/autophagic signaling activation and cytotoxicity. CONCLUSION: Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Dioxolanos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antioxidantes/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Concentração Inibidora 50 , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Fosforilação , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
6.
Oxid Med Cell Longev ; 2014: 653732, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967005

RESUMO

Piperlongumine (PL) is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS) responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG) cells but not normal astrocytes in the scratch-wound culture model. PL did not alter EdU(+)-cells and cdc2, cdc25c, or cyclin D1 expression in our model. PL increased ROS (measured by DCFH-DA), reduced glutathione, activated p38 and JNK, increased IκBα, and suppressed NFκB in LN229 cells after scratching. All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC). Pharmacological administration of specific p38 (SB203580) or JNK (SP600125) inhibitors significantly reduced the inhibitory effects of PL on LN229 cell migration and NF κ B activity in scratch-wound and/or transwell models. PL prevented the deformation of migrated LN229 cells while NAC, SB203580, or SP600125 reversed PL-induced morphological changes of migrated cells. These results suggest potential therapeutic effects of PL in the treatment and prevention of highly malignant tumors such as glioblastoma multiforme (GBM) in the brain by suppressing tumor invasion and metastasis.


Assuntos
Movimento Celular/efeitos dos fármacos , Dioxolanos/farmacologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Linhagem Celular Tumoral , Ensaios de Migração Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteínas I-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Transporte Proteico/efeitos dos fármacos
7.
Mol Neurobiol ; 49(1): 149-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23904011

RESUMO

Neuroglobin, the third mammalian globin with a hexa-coordinated heme, exists predominantly in neurons of the brain. Neuroglobin plays an important role in neuronal death upon ischemia and oxidative stress. The physiological function of neuroglobin remains unclear. Here, we report a novel function of neuroglobin in neurite development. Knocking-down neuroglobin exhibited a prominent neurite-deficient phenotype in mouse neuroblastoma N2a cells. Silencing neuroglobin prevented neurite outgrowth, while ectopic expression of neuroglobin but not homologous cytoglobin promoted neurite outgrowth of N2a cells upon serum withdrawal. In primary cultured rat cerebral cortical neurons, neuroglobin was upregulated and preferentially distributed in neurites during neuronal development. Overexpression of neuroglobin but not cytoglobin in cultured cortical neurons promoted axonal outgrowth, while knocking-down of neuroglobin retarded axonal outgrowth. Neuroglobin overexpression suppressed phosphatase and tensin homolog (PTEN) but increased Akt phosphorylation during neurite induction. Bimolecular fluorescence complementation and glutathione S-transferase pull-down assays revealed that neuroglobin and various mutants (E53Q, E118Q, K119N, H64A, H64L, and Y44D) bound with Akt and PTEN differentially. Neuroglobin E53Q showed a prominent reduced PTEN binding but increased Akt binding, resulting in decreased p-PTEN, increased p-Akt, and increased neurite length. Taken together, we demonstrate a critical role of neuroglobin in neuritogenesis or development via interacting with PTEN and Akt differentially to activate phosphatidylinositol 3-kinase/Akt pathway, providing potential therapeutic applications of neuroglobin for axonopathy in neurological diseases.


Assuntos
Diferenciação Celular/genética , Globinas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuritos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Cultivadas , Globinas/biossíntese , Globinas/genética , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuroglobina , PTEN Fosfo-Hidrolase/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos
8.
Biochem Biophys Res Commun ; 437(1): 87-93, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23796709

RESUMO

Piperlongumine (PL), a natural alkaloid isolated from the long pepper, may have anti-cancer properties. It selectively targets and kills cancer cells but leaves normal cells intact. Here, we reported that PL selectively killed glioblastoma multiforme (GBM) cells via accumulating reactive oxygen species (ROS) to activate JNK and p38. PL at 20µM could induce severe cell death in three GBM cell lines (LN229, U87 and 8MG) but not astrocytes in cultures. PL elevated ROS prominently and reduced glutathione levels in LN229 and U87 cells. Antioxidant N-acetyl-L-cysteine (NAC) completely reversed PL-induced ROS accumulation and prevented cell death in LN229 and U87 cells. In LN229 and U87 cells, PL-treatment activated JNK and p38 but not Erk and Akt, in a dosage-dependent manner. These activations could be blocked by NAC pre-treatment. JNK and p38 specific inhibitors, SB203580 and SP600125 respectively, significantly blocked the cytotoxic effects of PL in LN229 and U87 cells. Our data first suggests that PL may have therapeutic potential for one of the most malignant and refractory tumors GBM.


Assuntos
Dioxolanos/farmacologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dioxolanos/química , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Humanos
9.
Mol Pharmacol ; 83(5): 1109-19, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23478801

RESUMO

Hypoxia and oxidative stress are critical factors in carcinogenesis and exist throughout cancer development; however, the underlying mechanisms are far from clear. Here, for the first time to our knowledge, we reported that neuroglobin (Ngb), an intracellular hexa-coordinated globin serving as an oxygen/reactive oxygen species (ROS) sensor, functions as a tumor suppressor in hepatocelluar carcinoma (HCC). Ngb protein and mRNA expression were significantly down-regulated in tumor tissues, compared with its adjacent non-tumor tissues of human HCC samples and normal liver tissues. Knock-down of Ngb by RNA interference promoted human HCC cell line (HepG2) growth and proliferation, G0/G1-S transition in vitro, and tumor growth in vivo. On the contrary, overexpression of Ngb suppressed HepG2 cell growth and proliferation, G0/G1-S transition, colony formation in vitro, and tumorigenicity in vivo. These results established a tumor suppressor function of Ngb in HCC. The underlying mechanisms were further investigated. Overexpression of Ngb suppressed Raf/MEK/extracellular signal-regulated kinase (Erk), whereas knockdown of Ngb enhanced Raf/MEK/Erk activation in HepG2 cells in vitro and in vivo. Glutathione S-transferase pull-down showed that Ngb interacted with c-Raf-1 in HepG2 cells. Overexpression of Ngb suppressed serum- and H2O2-stimulated Erk activation in HepG2 cells. Pharmacological inhibition of Erk activation abolished the proliferative effect of Ngb knockdown in HepG2 cells. Mutation of Ngb at its oxygen-binding site (H64L) abolished the inhibitory effects of Ngb on Erk activation and HepG2 cell proliferation. Therefore, we propose that Ngb controls HCC development by linking oxygen/ROS signals to oncogenic Raf/mitogen-activated protein kinase (MAPK)/Erk signaling. Our data suggest that neuroglobin could be a new target for cancer therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Globinas/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinoma Hepatocelular/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Globinas/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/genética , Neuroglobina , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/genética , Quinases raf/genética , Quinases raf/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-22645630

RESUMO

Introduction. Intradialytic hypotension (IDH) is a common complication during hemodialysis which may increase mortality risks. Low dose of Korean red ginseng (KRG) has been reported to increase blood pressure. Whether KRG can improve hemodynamic stability during hemodialysis has not been examined. Methods. The 8-week study consisted of two phases: observation phase and active treatment phase. According to prehemodialysis blood pressure (BP), 38 patients with IDH were divided into group A (BP ≥ 140/90 mmHg, n = 18) and group B (BP < 140/90 mmHg, n = 20). Patients were instructed to chew 3.5 gm KRG slices at each hemodialysis session during the 4-week treatment phase. Blood pressure changes, number of sessions disturbed by symptomatic IDH, plasma levels of vasoconstrictors, blood biochemistry, and adverse effects were recorded. Results. KRG significantly reduced the degree of blood pressure drop during hemodialysis (P < 0.05) and the frequency of symptomatic IDH (P < 0.05). More activation of vasoconstrictors (endothelin-1 and angiotensin II) during hemodialysis was found. The postdialytic levels of endothelin-1 and angiotensin II increased significantly (P < 0.01). Conclusion. Chewing KRG renders IDH patients better resistance to acute BP reduction during hemodialysis via activation of vasoconstrictors. Our results suggest that KRG could be an adjuvant treatment for IDH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...